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Multilinear and nonlinear QSAR models were built for the skin permeation rate (LogKp) of a set of 143
diverse compounds. Satisfactory models were obtained by three approaches applied: (i) CODESSA PRO,
(ii) Neural Network modeling using large pools of theoretical molecular descriptors, and (iii) ISIDA modeling
based on fragment descriptors. The predictive abilities of the models were assessed by internal and external
validations. The descriptors involved in the equations are discussed from the physicochemical point of view
to illuminate the factors that influence skin permeation.

1. Introduction

Transdermal delivery systems are attractive for both topical
and systemic therapeutics. However, the skin barrier which
protects the body from physical and chemical attacks also
hinders the delivery of the required drug dose through the skin
to a target organ.1 Many exogenous substances have difficultly
passing thestratum corneumto reach the blood circulation
system. So-called skin permeation enhancers can improve the
penetration of other substances by perturbing the barrier function
of the stratum corneum.2 Many studies have attempted to
improve the permeation of drugs through the skin. The penetra-
tion of exogenous chemicals through the human skin is of
significance in many disciplines, ranging from (i) the pharma-
ceutical and cosmetic industries, where control of permeation
is essential for the topical application of lotions, creams, and
ointments, to toxicological risk assessments of materials from
the environment and in specific occupations.3

The primary barrier to percutaneous absorption is thestratum
corneum, and the penetration of a compound is determined
mainly by its chemical structure. The many additional factors
which play more subtle roles in influencing percutaneous
absorption include (i) the manner of application or contact of
compounds to the surface of the skin, (ii) strategies which alter
the barrier properties of thestratum corneum, (iii) processes
occurring in viable tissues, and (iv) biological factors.4

Many efforts have been made to develop experimental
approaches to measure percutaneous absorption: most available
data have been obtained by in vitro diffusion chamber experi-
ments, while the recorded in vivo data are commonly obtained
via biomonitoring.4,5 Percutaneous absorption and effects of skin
penetration enhancers on the transdermal transport rate of
various drugs are most frequently studied by conducting in vitro
experiments, which are much simpler to implement than in vivo
measurements.6

Permeation rates can be measured by (i) monitoring in vivo
drug release in live animals or human volunteers, (ii) employing
excised skin from human or animal sources, or (iii) using
synthetic model membranes as diffusion barriers in in vitro
experiments.7 Human skin from various sources, including
cosmetic surgery and amputations, has been used for the in vitro
assessment of percutaneous penetration.8-12 Skin from a wide
range of animals including pigs, rats, guinea pigs, snakes, rabbit,
and others has been suggested as a suitable replacement for
human skin.13-18 Among their species pig and rat skin barriers
to diffusion are the most similar to that of human skin and hence
are most commonly employed. Although animal skin provides
a good indication of the diffusion characteristics of chemicals,
it does not necessarily reproduce the complex nature of the
humanstratum corneum.

As a result of the problems of obtaining excised skin and
those associated with implementation of synthetic membranes,
there has been considerable interest in the use of quantitative
structure-activity relationships (QSARs) method to predict the
permeability of chemicals through the skin. This approach
attempts to relate statistically the experimentally measured
percutaneous penetration of a range of exogenous chemicals to
known physicochemical parameters. For the development of any
QSAR, a key feature is that all the “biological” data must be
reproducible and consistently measured using same protocol.
For skin permeation this implies skin from the same animal
(and probably the same sex) and ideally measured in one
laboratory and by the same workers.19

QSARs are useful in predicting behavior of novel compounds
and providing insights into mechanisms of activity. In trans-
dermal studies, the technique is often based on multivariate
regression analysis of molecular features that determine an index
of permeation such as the permeability coefficient,kp, or the
diffusion of the permeant across some part of the skin.20 Earlier
reports21-23 based on rather small data sets revealed a linear
relationship with hydrophobicity, i.e., the more hydrophobic a
compound, the more rapid its skin permeation.

In 1990, Flynn24 assembled a dataset of human skin perme-
ability coefficients and logarithmic function of octanol-water
partition coefficients, LogP, for over 90 compounds. He
demonstrated that, for groups of molecules of a similar size,
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algorithms based on LogP can provide a first estimate of the
skin permeability coefficients. Subsequently, many QSARs for
skin permeation have been published utilizing the Flynn data
set, where the data have either been used as a whole or subsets
taken to account for different types of compounds. The QSAR
treatment of skin permeation was reviewed in detail by Moss,
Dearden et al. in 2002.25

One aim of the present study is to relate LogKp (the logarithm
of the skin permeation rate) with theoretical descriptors (con-
stitutional, topological, geometrical, charge related and semiem-
pirical) calculated solely from the molecular structure. We
treated a data set of 143 diverse organic compounds using both
multilinear and nonlinear methodologies. The target property
was related to (i) molecular descriptors, which are certain
physicochemical parameters calculated either by quantum
mechanical methods or by an empirical technique (CODESSA
PRO software), and (ii) fragment descriptors, which use counts
of different types of topological fragments of molecules as
variables in a multiple regression analysis (ISIDA package
[ISIDA ( In Silico Design andData Analysis)],26). Both tech-
niques have their advantages and disadvantages. In addition,
an in-house built artificial neural network (ANN) was used for
studying the nonlinear dependency between the LogKp and
theoretical molecular descriptors. The possibility of using
calculated LogP values together with the theoretical molecular
descriptors for the prediction of LogKp was also examined.

2. Data Set

The experimental values given in Table 1 of LogKp for the
full data set of 143 compounds were collected from 10
sources.27-36 The compilation of the data set comprised three
distinct steps: (i) the conversion of (cm/hr) units into (cm/s)
for Kp, (ii) the calculation of the average value, if more than
one experimental value was found for a particular compound,
and (iii) the estimation of the logarithm ofKp.

Since LogP is important for skin permeation, it was essential
to develop a QSAR model for the prediction of LogP: to avoid
the need for experimental LogP data for assessment of skin
permeation rates. The experimental LogP values were taken
from the literature.37

Table (SI-1) in the Supporting Information contains: (i) the
CAS number of each compound, (ii) the experimental values
of the octanol:water partition coefficient, LogP where available,
and (ii) the calculated values of LogP (the last three columns).

Three software programs were assessed in the current work
for the computational prediction of LogP:

(i) The KowWin program estimates the log octanol/water
partition coefficient (LogP) of organic chemicals using an atom/
fragment contribution method developed at Syracuse Research
Corporation.38 The calculated values of LogP using this method
are given in the column LogPcalc1 of SI-1.

(ii) The CLOGP program calculates LogP adding together
values for structural parts of a solute molecule and correction
factors dependent upon the particular way the parts are put
together.39 These values are given in the column LogPcalc2 of
SI-1.

(iii) The IA Log P and LogW Predictor,37 developed by
Interactive Analysis Inc., uses neural network implementation
of E-State indices to derive a set of 10-fold cross-validated
networks. The corresponding calculated values of LogP for
all 143 organic compounds are given in the column LogPcalc3

of SI-1.
All these three programs were accessed and used from the

Interactive Analysis Inc. webpage.37

3. Methodology

3.1. Multilinear Regression Analysis. 3.1.1. CODESSA
PRO Approach. The two-dimensional molecular structures of
the 143 species were drawn using ISIS/Draw 2.4.40 Preoptimi-
zation and three-dimensional conversions used molecular me-
chanics force field method (MM+) included in Hyperchem
7.0.41 Final optimizations were performed with CODESSA PRO
using the AM1 parametrization within the semiempirical
quantum-chemical program CMOPAC, an in-house modification
of MOPAC version 7.0.42 The following keywords were used:
AM1 VECTORS BONDS PI POLAR PRECISE ENPART EF.
A gradient norm of 0.01 kcal/Å was used to test the optimized
geometry for the isolated molecules. AM1 force calculations
were carried out with keywords AM1 FORCE PRECISE
THERMO ROT)1 to produce thermodynamic parameters.
Constitutional, topological, geometrical, thermodynamic, quan-
tum chemical, and electrostatic descriptors were calculated for
the final optimized structures.43

The best multilinear regression (BMLR)44 procedure was
applied to obtain regression models from selected noncollinear
descriptors. The BMLR selects the best two-parameter regres-
sion equation, the best three-parameter regression equation etc.,
based on the highestR2 value in the stepwise selection procedure
of the regression analysis. During the BMLR procedure the
descriptor scales are normalized and centered automatically, and
the final result is given in natural scales. This result is considered
the best representation of the property in the given pool of
descriptors.

A major decision in developing successive QSAR is when
to stop adding descriptors to the model during the stepwise
regression procedure. The lack of an adequate control in this
respect leads to over-correlated equations, containing an exces-
sive number of descriptors and difficult to interpret in terms of
interaction mechanisms. A simple limitation for supervising the
model expansion is the difference between the squared correla-
tion coefficients of consecutive models (∆R2), as defined by
eq 1, wherei ) 1, 2, ...,n, and j ) i + 1, are the number of
descriptors involved in the corresponding model.

Also, in order to monitor the possibility of chance correlation
between the selected descriptors, the same eq 1 is applied to
estimate∆R2

cv, whereR2
cv represents the cross-validated (Leave-

One-Out method) correlation coefficient.
With low numbers of descriptors, this relationship has a steep

ascent indicating substantial improvement of the correlation by
adding descriptors. After a certain “break point”, the relationship
has much lower slope and the improvement of the model
becomes less significant. Based on our previous experience, this
occurs for∆R2 e 0.02 units. The model corresponding to the
break point is considered the best/optimum model.

3.1.2. ISIDA Approach. The structure-property modeling
was performed using the ISIDA program which realizes the
Substructural Molecular Fragments (SMF) method.45 The SMF
method is based on the splitting of a molecular graph on
fragments (subgraphs) and on the calculation of their contribu-
tions to a given propertyY. Two different classes of fragments
are used: “sequences” (I ) and “augmented atoms” (II ). Three
subtypes AB, A, and B are defined for each class. For the
fragmentsI , they represent sequences of atoms and bonds (AB),
of atoms only (A) or of bonds only (B). The number of atoms
in these sequences varies from 2 to 6, and only the shortest
paths from one atom to the other are used. An “augmented atom”

∆Ri,j
2 ) Rj

2 - Ri
2 (1)
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represents a selected atom with its environment including both
neighboring atoms and bonds (AB), or atoms only (A), or bonds

only (B). Atomic hybridization (Hy) can be taken into account
for augmented atoms of the A-type. Benson type augmented

Table 1. QSPR Modeling of Skin Permeation Rate: Experimental and Predicted LogKp Values

predicted logKp (cm/s) predicted logKp (cm/s)

ID compound
exp

log Kp

ISIDA
eq 2

CODESSA
eq 7 ANN ID compound

exp
log Kp

ISIDA
eq 2

CODESSA
eq 7 ANN

1 1,1,1-trichloroethane -5.9 -5.52 -5.05 -4.53 73 ethanol -6.53 -6.61 -6 -6.16
2 1,2,3-trihydroxybenzene -6.37 -6.85 -6.04 -6.4 74 ethyl benzene -3.36 -3.99 -4.25 -4.29
3 1,2,4-trihydroxybenzenea -7.46 -6.85 -6.3 -6.78 75 diethyl ethera -6.02 -5.52 -5.52 -5.74
4 1,3,5-trihydroxybenzene -6.07 -6.85 -6.57 -6.91 76 ethyl nicotinate -5.28 -5.58 -5.89 -5.74
5 12-deoxyphorbol 13-isobutyrate -5.99 -6.18 -6.75 -7.02 77 etorphine -5.88 -5.67 -7 -6.63
6 2,3-butanediol -7.62 -7.71 -7.21 -7.34 78 fentanyl -5.56 -5.85 -5.28 -4.99
7 2,4,6-trichlorophenol -4.7 -4.49 -5.13 -5.16 79 fluocinonide -6.33 -6.73 -6.83 -7.05
8 2,4-dichlorophenola -4.7 -4.72 -5.2 -5.59 80 hydrogencarboxylic acid -6.6 -6.38 -5.78 -6.05
9 2-amino-4-nitrophenol -6.67 -6.49 -6.15 -5.95 81 heptanoic acid -5.03 -4.96 -5.26 -5.25
10 2-butanone -5.78 -5.68 -6.03 -6.02 82 hexanoic acid -5.18 -5.21 -5.5 -5.48
11 2-chlorophenol -4.96 -4.95 -5.29 -5.37 83 hexyl nicotinate -4.83 -4.55 -4.82 -4.74
12 2-ethoxyethanol -7.06 -6.61 -6.51 -6.68 84 hydrocortisone hemipimelate -6.3 -6.27 -6.44 -6.6
13 2-heptanol -5.04 -5.33 -5.23 -5.20 85 hydrocortisone hemisuccinate-6.76 -7.04 -7.32 -7.67
14 2-hydroxypropyl nicotinate -7.55 -6.21 -6.11 -6.37 86 hydrocortisone hexanoate -5.3 -5.80 -5.82 -5.63
15 2-nitrophenol -4.08 -5.38 -5.44 -5.44 87 hydrocortisone octanoate -4.77 -5.29 -5.23 -5.02
16 2-nitro-p-phenylenediamine -6.81 -6.78 -6.78 -6.36 88 hydrocortisone propinatea -6.17 -6.57 -6.83 -6.47
17 2-phenylethanola -5.23 -5.08 -5.63 -6.04 89 hydrocortisone -7.85 -8.06 -7.76 -7.84
18 3,4-xylenola -4.92 -4.84 -5.1 -5.54 90 hydromorphone -8.03 -8.24 -7.31 -7.49
19 3-phenylpropanol -4.84 -4.83 -5.45 -5.48 91 hydroquinonea -6.51 -6.01 -6.01 -6.52
20 4-amino-2-nitrophenol -6.04 -6.49 -6.37 -6.23 92 hydroxypregnenolonea -6.78 -6.39 -6.21 -5.63
21 4-bromophenol -4.92 -5.38 -4.99 -5.04 93 hydroxyprogesteronea -6.78 -6.18 -6.77 -6.09
22 4-chloro-3-methylphenola -4.71 -4.78 -4.89 -5.31 94 ibuprofena -5.3 -5.16 -4.88 -5.28
23 1-chloro-2,4-diaminobenzenea -6.31 -6.35 -6.73 -6.58 95 indomethacin -5.85 -5.85 -5.1 -5.42
24 4-ethylphenola -4.93 -4.82 -4.87 -5.29 96 isoquinoline -5.29 -5.07 -5.31 -5.03
25 4-hydroxybenzyl alcohol -6.26 -6.47 -6.42 -6.71 97 lidocaine -6.17 -6.17 -5.82 -5.59
26 4-hydroxy-methylphenylacetatea -5.26 -5.75 -5.73 -6.29 98 1-hydroxy-3-methylbenzene -5.29 -5.01 -5.09 -5.19
27 4-hydroxyphenylacetamide -6.89 -7.38 -6.89 -6.95 99 meperidine -5.7 -5.66 -5.61 -5.56
28 4-hydroxyphenylacetic acid -6.06 -6.23 -6.38 -6.65 100 methanol -6.7 -6.99 -6.03 -6.4
29 4-phenylbutanol -4.74 -4.57 -5.28 -5.29 101 methyl 4-hydroxybenzoate -5.44 -5.28 -5.31 -5.53
30 5-fluorouracil -6.82 -6.76 -7.91 -7.3 102 methyl nicotinate -5.77 -5.95 -6.24 -6.11
31 5-phenylpentanola -4.53 -4.31 -4.92 -5.3 103 3-hydroxy-1-nitrobenzene -5.73 -5.38 -5.34 -5.35
32 6-phenylhexanol -4.56 -4.06 -4.7 -4.73 104 morphinea -8.3 -8.07 -7.64 -7.6
33 8-methoxypsoralen -5.12 -4.95 -5.63 -6.01 105 naproxen -5.74 -6.31 -5.15 -5.41
34 acetic acid -6.53 -6.94 -6.11 -6.19 106 1-butanol -6.08 -6.10 -5.75 -5.79
35 aldosterone -8.17 -8.25 -8.05 -8.13 107 1-decanol -4.47 -4.56 -4.02 -4.27
36 amylobarbital -6.14 -6.14 -6.29 -6.35 108 1-heptanol -4.91 -5.33 -5.02 -5.01
37 anilinea -5.05 -5.46 -5.69 -5.81 109 1-hexanola -5.27 -5.59 -5.29 -5.59
38 anisole -4.8 -4.92 -4.84 -4.86 110 nicotinea -5.47 -5.47 -6.53 -6.65
39 aspirin -5.69 -5.69 -5.97 -6.19 111 nitroglycerine -5.44 -5.52 -5.83 -5.62
40 atropine -7.8 -7.36 -6.59 -6.91 112 1-octanol -4.69 -5.07 -4.88 -4.87
41 barbital -7.47 -7.40 -7.18 -7.22 113 1-nonanola -4.68 -4.82 -4.47 -4.88
42 benzaldehydea -4.47 -4.54 -5.28 -5.69 114 1-pentanol -5.7 -5.84 -5.5 -5.52
43 benzenea -4.41 -4.35 -4.36 -4.78 115 1-propanol -6.32 -6.36 -5.94 -6.03
44 benzoic acid -5.15 -4.93 -5.24 -5.35 116 1-hydroxy-2-methylbenzene -5.28 -5.01 -5.08 -5.14
45 benzyl alcohol -5.41 -5.64 -5.58 -5.64 117 1-heptanecarboxylic acida -4.93 -4.70 -4.92 -5.27
46 benzyl nicotinatea -4.87 -4.60 -5.45 -5.72 118 1,2-benzenediamine -6.85 -6.58 -6.68 -6.32
47 naphthalene-2-ol -5.04 -4.40 -4.84 -5.32 119 ouabain -9.66 -9.79 -10.11 -9.26
48 bromodichloromethane -3.82 -3.82 -4.14 -4.2 120 4-hydroxychlorobenzenea -4.92 -4.95 -5.08 -5.52
49 bromoform -3.75 -3.75 -3.58 -3.9 121 1-hydroxy-4-methylbenzenea -5.23 -5.01 -5.09 -5.51
50 butobarbital -7.23 -6.89 -6.56 -6.6 122 pentanoic acid -5.96 -5.47 -5.71 -5.7
51 butyl nicotinate -4.86 -5.06 -5.47 -5.31 123 phenobarbitala -6.66 -6.68 -6.69 -6.96
52 butyric acida -6.27 -5.73 -6 -6.2 124 phenol -5.52 -5.18 -5.14 -5.28
53 caffeine -6.46 -6.46 -7.6 -7.36 125 piroxicam -7.37 -7.43 -6.04 -6.14
54 catechol -6.07 -6.01 -5.85 -6.12 126 4-hydroxynitrobenzene -5.73 -5.38 -5.36 -5.38
55 chlorodibromomethane -3.78 -3.78 -3.89 -4.05 127 1,4-benzenediamine -7.13 -6.58 -6.97 -6.65
56 trichloromethanea -3.92 -3.92 -4.36 -4.63 128 pregnenolonea -6.38 -6.39 -6.04 -5.29
57 chloroxylenola -4.72 -4.61 -4.95 -5.35 129 progesteronea -5.5 -5.79 -6.31 -5.54
58 chlorpheniramine -6.19 -6.21 -5.69 -5.27 130 propionic acida -6.02 -5.98 -6.06 -6.25
59 codeine -7.58 -7.81 -7.35 -7.45 131 resorcinol -7.03 -6.01 -5.93 -6.24
60 cortexolone -7.68 -6.71 -6.84 -6.74 132 salicylic acid -5.53 -5.77 -5.2 -5.47
61 cortexone -6.9 -6.32 -6.99 -6.8 133 scopolamine -7.87 -7.88 -7.19 -7.68
62 corticosterone -7.26 -7.67 -7.56 -7.56 134 styrene -3.75 -4.54 -4.19 -4.27
63 cortisonea -8.56 -7.84 -7.89 -7.5 135 sucrose -8.84 -8.84 -9.29 -9.19
64 dexamethasonea -7.53 -7.36 -7.72 -7.28 136 sufentanyl -5.4 -5.40 -5.66 -5.27
65 diclofenac -5.73 -6.00 -4.96 -4.94 137 testosterone -6.27 -6.32 -6.51 -6.18
66 diethyl ethera -5.37 -5.52 -5.52 -5.74 138 tetrachloroethylene -4.86 -5.52 -4.34 -4.2
67 diethylcarbamazine -7.01 -7.15 -7.2 -7.1 139 thymol -4.74 -5.21 -4.66 -4.7
68 digitoxin -8.37 -8.14 -7.77 -7.61 140 toluene -3.58 -4.18 -4.28 -4.33
69 ephedrine -5.72 -5.64 -6.29 -6.19 141 trichloroethylene -4.03 -4.03 -4.62 -4.61
70 estradiola -6.14 -6.59 -5.64 -5.48 142 ureaa -7.39 -7.14 -7.91 -7.24
71 estriola -7.96 -7.94 -6.73 -6.77 143 water -6.53 -6.53 -6.36 -6.77
72 estrone -6 -5.93 -6.23 -6.22

a These 40 compounds were randomly selected as the validation set for the ANN approach and were not included into the ANN training set.
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atomsII (Benson) correspond to substructural fragments sug-
gested in ref 45 for fast estimation of enthalpy of formation
and the enthalpy of organic compounds within an additive
scheme.

Once a molecular graph is split into constitutive fragments,
any corresponding quantitative physical or chemical property
Y is calculated from the fragment contributions using linear (eq
2) or nonlinear (eq 3) and (eq 4) fitting equations.

where,ai andbi (bik) are fragment contributions,Ni is the number
of fragments of i type. Theao term is fragment independent.
Theao, ai, andbi (bik) are obtained by the multilinear regression
procedure using the training set of compounds. An extra term
Γ ) ΣcmDm can be used to describe any specific feature of the
compound using external descriptorsDm (e.g., topological,
electronic, etc.), by defaultΓ ) 0.

At the training stage, builds up to 147 structure-property
models involving 49 types of fragment descriptors and the three
linear and nonlinear fitting equations. If some fragments are
linearly dependent, they are treated as one extended fragment.
Using the singular value decomposition method (SVD) the
program fits theai andbi terms in eqs 2-4 and calculates the
corresponding statistical characteristics (correlation coefficient
(R), standard deviation (s), Fischer’s criterion (F), cross-
validation correlation coefficient (Q), standard deviation of
predictions (sPRESS), Kubinyi’s criterion (FIT), RH-factor of
Hamilton, and matrix of pair correlations (covariation matrix
for the termsai andbi) and performs statistical tests24 to select
the best models.

If some of the variables in eqs 2-4 are linearly dependent,
or if a given fragment occurs in a relatively small number of
molecules, the standard deviation∆ai (∆bi) for the fragment
contributionsai (bi) can be large and lead to the corresponding
t-test (t ) ai/∆ai) being smaller than the tabulated value (t0). In
such cases the following procedure is applied in order to improve
the robustness of the models. First, it selects the variable with
the smallestt < t0, and then it performs a new fitting excluding
that variable. This procedure is repeated untilt g t0 for all
variables.

ISIDA recognizes nine different types of bonds: single,
double, triple (each of these in a ring or in a chain), aromatic
bonds, and two types of coordination bonds. Therefore, the
EdChemSeditor of 2D structures incorporated in the ISIDA
package is used to normalize the bond types in the aromatic
fragments originally presented as Kekule structures and to
modify bond types in rings accounting for the difference
between chains and rings. Then, using theSDF Editor also
included in ISIDA, structure data files (SDF) containing all 143
structures names of the compounds and the experimental values
of Log Kp or have been prepared and further used in structure-
property modeling. All hydrogen atoms were omitted in ISIDA
calculations.

3.2. Nonlinear Analysis. Artificial Neural Network (ANN).
An artificial neural network is a biologically inspired computer
algorithm designed to treat the data in a manner emulating the
learning pattern in the brain. The computer-based network

accepts a set of input values, transforms these, and generates
an associate set of output values.46 Through an iterative
“learning” process, the network refines the information derived
from the input values (descriptors) in order to reproduce an
associated set of target values (experimental LogKp). Once a
network has been trained to recognize the underlying theme
for a given set of input/target pairs, it may be used to predict
an output value corresponding to a new group of input values.

In our case, the signal emerging from the output neuron
represents the current log skin permeation rate for a givenp-th
input,opk, for the set of input descriptors utilized and given the
architecture withk outputs of the network. When this value is
compared to the desired (experimental target) LogKp, tpk, a
measure of the network error can be calculated. The sum-squared
error used to quantify the effectiveness of the network is given
by eq 5. The data are repeatedly passed through the network,
with the overall error successively decreasing as the network
adjusts the weights and biases to reflect the structure-skin
permeation relationship.

The back-propagation network and the delta rule for optimi-
zation of the weights were used.46 On the basis of the steepest
descent method, this technique optimizes the connection weights
by proceeding in the direction that most reduces the error of
the estimate. The connection weight,wij , is corrected by the
amount∆wij , which is proportional to the network errorE with
respect to each weight as shown in eq 6, whereη is the learning
rate set by the researcher. The learning rate is introduced in
order to control the average step size of the weight change. In
the training process the weights are iteratively adjusted by
appropriate amount (eq 6).

A neural network is trained, i.e. the neural network learns
from a predefined group of compounds known as the training
set. One potential problem associated with the use of network
technique is that it may overtrain i.e. derive a relationship which
is too specialized. This problem is averted by delegating a
portion of the compounds to serve as “a validation set”. Because
this set of compounds has no direct influence on the actual
learning process, it can be used to monitor the predictive
capability of the network at regular intervals during a training
run. By tracking the validation set error, the optimal set of
weights (and biases) to be used as the final predictive model
can then be identified.

3.3. Internal Validation. To perform internal validation of
the multilinear QSPR (CODESSA PRO) models and the models
obtained by ISIDA, the parent data set was divided into three
subsets (a, b, c): the 1st, 4th, 7th, etc. data points go into the
first subset (a), the 2nd, 5th, 8th, etc. into the second subset
(b), and the 3rd, 6th, 9th, etc. into the third subset (c). Then,
three training sets A, B, and C were prepared as the combina-
tions of two subsets (a and b), (a and c), and (b and c),
respectively. The remaining subsets (c, b, and a, respectively)
become the corresponding test sets.

For each of the training sets the correlation equation was
derived with the same descriptors in eq 7. Then, the obtained
equation was used to predict LogKp values for the compounds
from the corresponding test set.

Y) ao + ∑
i

aiNi + Γ (2)

Y) ao + ∑
i

aiNi + ∑
i

bi(2Ni
2 - 1) + Γ (3)

Y) ao + ∑
i

aiNi + ∑
i,k

bikNiNk + Γ (4)

E ) ∑
1

p

(tpk - opk)
2 (5)

∆wij ) - η
∂Ep

∂wjk
(6)
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The efficiency of QSAR models to predict LogKp value was
estimated using the cross-validation (Leave One Out method47)
correlation both for the full set and for each of the three training
sets. The correlation coefficients and standard deviations of
linear correlations between experimental and predicted for test
sets LogKp values were also calculated.

4. Results

4.1. CODESSA PRO Calculations.Our attempt to build a
useful QSAR tool for prediction of skin permeation rate used
various combinations of the existing descriptors for different
types of correlations.

(1) POOL 1 (878 parameters) (CODESSA): Models based
only on molecular descriptors (877) and LogP as external
descriptor;

(2) POOL 2 (1181 parameters) (CODESSA+ ISIDA):
Models with molecular descriptors (877), fragment descriptors
(303), and LogP;

(3) POOL 3 (1183 parameters) (ANN): Models with mo-
lecular descriptors (877), fragment descriptors (303), and Log
P, (log P)2, (Log P)0.5.

To find the model with the optimum set of descriptors,
multiple parameter correlations involving up to 10 descriptors
were developed for each of the three descriptors sets used. The
“break point” algorithm described in section 3.1.1 was then
applied to determine the best correlation (see Table 2). In
addition, to reduce the possibility of chance correlations for the
descriptors selected in the equations, the cross-validated cor-
relation coefficientR2

cv was monitored for significant increases
on increasing the number of descriptors (see eq 1). Also, a
randomization Monte Carlo test50 for chance correlations for
each equation indicated that the possibility of chance correlation
was less than 0.001.

The algorithm for descriptor selection for the ANN model is
different than the above-mentioned and is described in section
4.3. However, for completeness we also present the results for
ANN in Table 2.

First, the information given in Table 2 reveals that the best
sets of descriptors have five parameters, when the 1st or 2nd

pool of descriptors was used for multilinear regression, and four
parameters, when the 3rd pool (neural network approach) was
used. Comparison of the five-parameter models developed for
POOL 1 and POOL 2 shows that they are identical. Importantly,
all pools include LogPexp as external descriptor, and LogPexp

is also present in the five-parameter CODESSA model. Obvi-
ously, LogPexp relates significantly to the skin permeation rate.
The four remaining parameters are all theoretical descriptors
calculated solely from the molecular structure.

On the basis of the above-mentioned observations, we selected
the five-parameter regression equation as best QSAR model
developed using the CODESSA PRO approach. The mathemati-
cal form of this QSAR model, given by eq 7, has the following
statistical characteristics:N ) 143,k ) 5, R2 ) 0.800,R2

cv )
0.781,F ) 109.6, ands ) 0.54.

The symbolic notations of descriptors involved in the QSAR
models are presented in Table 3.

The predicted and experimental LogKp values are given in
Table 1. The correlation between predicted and observed values
for the LogKp (eq 7) is plotted in Figure 1.

4.2. ISIDA Calculations. Calculations on the full set using
the ISIDA approach resulted in a statistically significant linear
model based on theII (Benson) fragments which represent
augmented atoms built according to the scheme suggested in

Table 2. Selection of the Best Sets of Descriptors. Best Models

POOL 1 POOL 2 POOL 3

R2 ∆R2 R2 ∆R2 R2 ∆R2

2 0.7 0.7
3 0.75 0.04 0.75 0.04 0.76
4 0.77 0.03 0.77 0.03 0.81 0.05
5 0.81 0.03 0.81 0.03 0.84 0.04

Table 3. Molecular Descriptors Involved in the QSAR Models

models

CODESSA PRO

descriptor name symbol eq 7 eq 13 ANN

External
1 LogPexp D1 D1 D1
2 LogPcalc1 D7 D7

Topological
3 Kier & Hall index (order 3) D2 D2 D2 D2

Thermodynamic
4 rotational entropy (300 K)/no. of atoms D3 D3 D3 D3

Charge-Distribution-Related
5 HASA-2/TMSA (Zefirov Partial Charge) D4 D4 D4
6 H-acceptors FCPSA (version 2) D6 D6

Constitutional
7 number of O atoms D5 D5 D5

Figure 1. Predicted vs experimental LogKp values by using eq 7,
CODESSA PRO approach (with LogPexp).

Log Kp ) -(7.20( 0.17)+ (0.67( 0.04)D1 -
(0.24( 0.03)D2 + (0.74( 0.09)D3 -

(23.43( 3.50)D4 + (0.20( 0.04)D5 (7)
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ref 45. The statistical parameters of this model (N ) 143,k )
41, R2 ) 0.907, s ) 0.43, Rcv

2 ) 0.812, F ) 24.8) are
considerably better than those obtained for the CODESSA PRO
models. The plot of calculated vs experimental LogKp values
(Figure 2) also demonstrates good performance of the model.
The fragments’ contributions are given in Figure 3.

4.3. ANN Calculations.Before the neural network treatment
was started, the experimental property values and descriptor
values were both normalized to a range 0-0.9. The significant
descriptors were selected from the large descriptor pool. The
available data were divided into a training and a validation set.
POOL 3 was used for the descriptor selection. The validation
set for the network was constructed from almost one-third (40)

of the compounds randomly selected from the full set. This
provides a check against over-training of the models (these
compounds are highlighted in Table 1). The remaining (103)
compounds were used as the training set for the network. All
CODESSA PRO descriptors were examined for intercorrelations
and redundant and highly correlated descriptors excluded.
Further, by constructing simple 1-1-1 neural networks, sensitiv-
ity analyses were performed, and then the descriptors that
produced the lowest error (5) were selected. Several neural
network models with different architecture were investigated
using the descriptors selected as above. The best model that
was found was 4-4-1, i.e. four neurons (descriptors) in the input
layer, four neurons in the hidden layer, and one neuron in the
output layer. The input neurons consist of the following
descriptors: Kier & Hall index (order 3), Rotational entropy
(300K), H-acceptor FCPSA (version 2), and LogPexp. The latter
was forced into the model since it showed a good correlation
with the property under investigation. The next stage of the
computation was to train the neural network. By starting with
the random weights, the optimized weights were obtained after
(approximately) 8000 epochs (cycles). For each epoch, the
weights were updated with the amount defined by eq 6.

During the training (optimization), the output error (RMS)
was tracked usingR2 of the validation set. When the output
error started increasing (after a certain epoch), the training
process was stopped and the optimized weights were selected
as final. The optimal weights were obtained at maximumR2 )
0.721 and minimum RMS (root-mean squared error)) 0.661
of the validation set. At this point the RMS minimum was
achieved for the validation set, and the ANN training was
stopped to prevent over-fitting. The results for the predicted
Log Kp values of the training set are shown in Table 1. The
predicted vs experimental LogKp for the training set are shown
as a linear fit in Figure 4.

The RMS andR2 values for the training set were 0.519 and
0.813, respectively. Similarly, the predicted vs experimental Log
Kp for the validation set are shown in Figure 5. The validation
set was not used for training the network; thus, it serves also as
external prediction for this neural network model.

The comparison of the linear and ANN models indicates that
the ANN models are slightly better than the linear models (see
Table 2). However, the models are built on different number of
compounds and therefore the direct comparison is not straight-
forward. In our neural network modeling, it was implied that
the model has to be as simple as possible and to have as good
prediction as possible. With only four descriptors in the input,
the network was able to predict the data for 40 additional
compounds with a reasonable correlation ofR2 ) 0.72. In
addition, the standard deviation of the ANN model (s ) 0.524)

Figure 2. Calculated vs experimental skin permeation rate (LogKp).
ISIDA calculations were performed for the full sets of compounds using
linear II (Benson) model.

Table 4. Fragment Numbers and the Corresponding Fragments

n fragment n fragment n fragment n fragment

1 a0
a 11 C(C′CB′CO) 21 C(C′C) 31 CB(SB) f

2 C(C′C′C′CO) b 12 O(C) 22 CD(CO) 32 CD(Cl)
3 C(C′C′C′C) 13 O 23 C(CB) e 33 C(Cl′Cl′Cl)
4 C(C′C′C′CB) 14 CB(N) 24 C(C′CO) 34 C(C′N′CB)
5 CO(CB′NI) 15 O(CO) 25 CB(Cl) 35 C(Cl′Cl′Br)
6 N(C′C′C) 16 N(CO) 26 CO(O’CB) 36 C(Cl′Br′Br)
7 NI(CB) c 17 O(CB) 27 C(C′CB) 37 C(Br′Br′Br)
8 CO(C′CD) 18 C(CO) 28 C(C′C′O’CO) 38 C(N′CO)
9 CO(N′CD) d 19 C(O) 29 C(C′C′C) 39 C(C′O’CD)
10 CO(C′N) 20 CB 30 CO(N′CB) 40 C(C′C′C′O)

41 C(C′C′O’O)

a The ao term is fragment independent.b C(C′C′C′CO) is a Csp3 atom connected to three Csp3 atoms and one CdO group.c NI(CB) is a Nsp2 (imino or
aromatic nitrogen) atom connected to aromatic carbon.d CO(N′CD) is a carbonyl group CdO connected to Nsp3 and carbon atom in alkenyl group.e C(CB)
is a Csp3 atom connected to one aromatic carbon and three hydrogen atoms.f CB(SB) is an aromatic carbon connected to sulfur S(II) in the thiophene ring.

Figure 3. Modeling of skin permeation rate by ISIDA program.
Contributions (an) of the fragments to skin permeation rate (LogKp)
for the II (Benson)/eq 1 model for the full data set. The standard
deviations are given as error bars. The fragments numbers (n)
correspond to the following fragments listed in Table 4.
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is less than the standard deviation of the multilinear eq 7 (s )
0.540). Also, the advantage of the ANN model is that it was
already validated externally.

4.4. Validation of the Models.The validation calculations
indicate: (i) The predictedR2 values for CODESSA PRO
models are in good agreement with the original QSAR model
(eq 7) with the average correlation coefficients of 0.804 and
0.783 for the training and prediction sets, respectively. (ii) The
selected II (Benson)/eq 1 model predicts reasonably well the
modeled property for all three test sets: the average value of
R2(pred)) 0.630 is not very high, but still acceptable (see Table
5).

5. Discussion

This section contains three main topics: (i) a description and
interpretation of the molecular descriptors involved in CODES-
SA PRO (eq 7) and ANN models, (ii) an alternative QSAR
model for LogKp that involves LogPcalculatedinstead of Log
Pexperimental, and (iii) a comparison of the various models
proposed.

As described in Table 3, the QSAR model defined by the
regression eq 7 has four CODESSA PRO molecular descriptors
(D2, D3, D4, andD5), and one “external” descriptor,D1, as the
logarithmic function of the experimentally measured values of
the octanol:water partition coefficient, LogPexp.

The most important descriptor in eq 7 according to “t-test”
values is LogPexp (|t| ) 43.12). Overall, the significance of

the descriptors involved in the eq 7 model decreases in the
following order: D1 > D2 > D3 > D4 > D5.

The Kier & Hall index (order 3),D2, is a valence connectivity
index and accounts for the presence of heteroatoms and the
hybridization of atoms in the molecule. Theoretically,D2 is
based on the atomic valence connectivity for theith atom in
the molecular structure, which is given by the mathematical
formula of eq 8, whereZi is the total number of electrons in
the ith atom,Zi

v is the number of valence electrons, andHi is
the number of hydrogen atoms directly attached to theith
nonhydrogen atom. The “order 3” classification denotes that
there are three contiguous bond fragments and higher order
paths, clusters, path-clusters, or chain fragments. Consequently,
the definition of this descriptor is given by eq 9, wherem ) 3,
and the summation is carried out over all subgraphs of order 3
in the entire molecule.

The third descriptor in the model (eq 7),D3, is the rotational
entropy of the molecule at 300 K (Srot) divided by the number
of atoms (NA) in it, eq 10, where the rotational entropy atT )
300 K is given by eq 11.

The terms in eq 11 are:Ij, the principal moments of inertia
of the molecule;σ, the symmetry number of the molecule;h,
the Planck constant, andkT, the Boltzmann temperature. Both
D2 andD3 descriptors may be related to the size and shape of
the molecule.

The only charge-related descriptor in eq 7 isD4. This
parameter defines the area-weighted surface charge of the

Figure 4. Predicted vs experimental LogKp values for the training
set (103 datapoints), ANN approach.

Figure 5. Predicted vs experimental LogKp values for the test set (40
data points), ANN approach.

Table 5. Modeling of the Skin Permeation Rate (LogKp): Validation
of the CODESSA PRO and ISIDA Modelsa

training set n k R2 s test set ktest R2 (pred) s (pred)

CODESSA PRO (eq 7)
a+b 96 5 0.802 0.55 C 5 0.786 0.47
a+c 95 5 0.808 0.48 B 5 0.779 0.59
b+c 95 5 0.802 0.58 A 5 0.784 0.45
average 0.804 0.54 0.783 0.50

ISIDA (eq 2)b

a+b 96 32 0.915 0.42 C 35 0.675 0.6
a+c 95 28 0.921 0.36 B 34 0.612 1.02
b+c 95 35 0.920 0.45 A 37 0.604 1.28
average 0.919 0.41 0.630 0.97

a See text about the preparation of training and test sets. Statistical
parameters for the sets: the number of compounds in training set (n),
correlation coefficient (R) and standard deviation (s) for the model, the
number of fitted coefficients in test set (ktest), correlation coefficientR (pred)
and standard deviations (pred) for the linear correlation Log(Kp pred)) a
× Log(Kp exp) + b between experimental and predicted skin permeation
rate.b For some compounds (from 10 to 13) from the test set, the skin
permeation rate was not calculated if compounds contain unique molecular
fragment(s), which were not presented in the corresponding training set.

δi
v )

Zi
v - Hi

Zi - Zi
v - 1

(8)

D2 ) ∑
i)1

Ns

∏
k)1

m + 1( 1

δk
v)1/2

(9)

D3 )
Srot

NA
(10)

Srot ) Nk ln[π1/2

σ
∏
j)1

3 (8π2IjkT

h2 )1/2] (11)
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hydrogen-bonding acceptor atoms in the molecule, HASA2,
normalized by the total molecular surface area, TMSA. The
mathematical expression of HASA2 is given by eq 12.

In eq 12,qA is the partial charge on the hydrogen-bonding
acceptor (H) atom(s),SA is the surface area for this atom, and
Stot is the total molecular surface area. The electronegative atoms
with lone electron pairs are usually considered as potential
hydrogen-bonding acceptors in the molecule (O, N, etc.). As
can be seen from eq 7, this descriptor has a very strong negative
influence over the skin permeation rate.

The final descriptor in the five-parameter QSAR model eq 7
is D5 that counts for thenumber of O atoms inthe molecule. It
is usually related to the hydrogen-bonding ability of the
molecules. However, the positive sign of the regression coef-
ficient indicates that the respective term may represent a
relatively small correction to the large negative hydrogen-
bonding term involvingD4. It has been noticed, that such
corrections to charge-related descriptors connected to the number
of certain atoms in the molecule may be due to the deficiency
of standard semiempirical quantum-chemical parametrizations
to describe accurately the charge distribution of molecules in
condensed media. The adjustment of the parametrization for
liquid media can remove such “correction terms”.48

It was observed that descriptorsD2 and D4 decrease the
logarithm of the skin permeation rate, whereas descriptorsD1,

D3, andD5 make positive contributions to the studied property.
The fragment contributions (Table 4) estimated by ISIDA

bring useful information concerning the influence of particular
molecular fragments on the skin permeation rate. Thus the
quaternary carbon atom having as neighbors either three carbons
and one oxygen atom (C(C′C′C′O) or two carbons (Csp3 and
Csp2) and one oxygen atom C(C′O′CD), and the carbon atom
C(N′CO) connected to one nitrogen, to one carbonyl group and
to polyhalogenated carbon atoms, significantly contribute to Log
Kp (Figure 3). The information about fragment contributions
could be used for the preparation of focused virtual combina-
torial libraries and its screening.49,50

The neural network model for the LogKp consisted of the
following descriptors: Kier & Hall index (order 3), Rotational
entropy (300K), H-acceptor FCPSA (version 2), and LogPexp.
Importantly, two of these descriptors (D1, Log P; andD2, Kier
& Hall index (order 3)) in the neural network model are also
included in the best five-parameter linear model (see eq 7 and
Table 3). The other two descriptors in the ANN model are very
similar to two of the descriptors in eq 7: (i) Rotational entropy
(300 K)/no. of atoms and Rotational entropy (300 K) (D3), (ii)
H-acceptor FCPSA (version 2) and HASA-2/TMSA (Zefirov
Partial Charge) (D4), respectively. This similarity of the descrip-
tors in the two models is not surprising. The linear model brings
up the descriptors that are the “best” in a given descriptor space.
The ANN treatment accounts additionally for the nonlinearity
of the dependence between LogKp and the descriptors and thus
gives slightly better description of the experimental data.
Therefore, the physisco-chemical picture based on the linear
model should be identical to the interpretations of the ANN
model.

Further, the five-parameter QSAR models that contain the
same set of four molecular descriptors (D2, D3, D4, and D5)

and the calculated values of LogP as the 5th parameter (D7),
instead of LogPexp, were examined.

Estimation and Utilization of Log Pcalc. Three different
methods were examined for computing LogPcalc values (see
SI-1 and Figure 6). The best correlation between the LogPcalc

and experimental LogP values was obtained when the values
of Log P were calculated using KowWin software38 (see Figure
6a).

We therefore substituted LogPexp with Log Pcalc1 in the pool
of descriptors and rebuilt the QSAR model to obtain eq 13.

Figure 6. a. Calculated LogPcalc1values (ref 38) vs experimental Log
Pexp. b. Calculated LogPcalc2 (ref 37) values vs experimental LogPexp.
Figure 6c. Calculated LogPcalc3 (ref 39) values vs experimental Log
Pexp.

Log Kp) -(7.233( 0.180)+ (0.662( 0.042)D7 -
(0.237( 0.027)D2 + (0.732( 0.097)D3 -

(21.592( 3.711)D4 + (0.200( 0.044)D5 (13)

HASA2 ) ∑
A

qAxSA

xStot

(12)
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Equation 13 has the following statistical characteristics:N
) 143, k ) 5, R2 ) 0.774,R2

cv ) 0.747,F ) 93.7, ands )
0.575.

The correlation between predicted and observed values for
the LogKp (eq 13) is plotted in Figure 7. The main observation
is that both QSAR models (eq 7 and eq 13) have similar
statistical characteristics. Consequently, we assume that eq 13
can be successfully used to predict the rate of skin permeation
for compounds with no available experimental values of the
octanol:water partition coefficient.

6. Conclusions

Our present attempt to correlate the skin permeation rate (Log
Kp) with theoretically calculated molecular descriptors, fragment
descriptors, and external descriptor as LogP has led to
successful QSAR models that relate this complex molecular
property to structural characteristics of the molecules. Notably,
all descriptors appearing in the multilinear equations (CODESSA
PRO and ISIDA approach) and the ANN model have been
derived from theoretical molecular calculations. The exception
is the external descriptor LogP, for which the experimental
data were taken from the literature. However, the computational
methods were used and validated for the prediction of LogP
values, used subsequently to QSAR models for skin permeation
rate.

The current computational power available for chemical
research allows carrying out such QSAR calculations for large
data sets in a realistic time frame. The results obtained for this
work indicate that both the multilinear regression and the ANN
models exhibit good prediction capabilities. Thus, in principle,
the QSAR models developed in our present work can be used
for the prediction of skin permeation rate for additional
compounds.
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